HRS White paper on Clinical Utilization of Digital Health Technology

Elaine Y. Wan, MD†, Hamid Ghanbari, MD‡, Nazem Akoum, MD, MS³, Zachi Itzhak Attia, MSEE, PhD⁴, Samuel J. Asirvatham, MD⁵, Eugene H. Chung, MD⁶, Lilas Dagher⁵, Sana M. Al-Khatib, MD, MHS⁶, G. Stuart Mendenhall, MD⁷, David D. McManus, MD, MSCI⁸, Rajeev K. Pathak, MBBS, PhD⁹, Rod S. Passman, MD¹⁰, Nicholas S. Peters¹¹, David S. Schwartzman, MD¹², Emma Svennberg, MD¹³, Khaledoun G. Tarakji, MD¹⁴, Mintu P. Turakhia, MD, MS¹⁵, Anthony Trela, NP, RN¹⁶, Hirad Yarmohammadi, MD¹, and Nassir F. Marrouche, MD⁵*

†These authors contributed equally to this manuscript

Affiliations

¹Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
²University of Michigan, Ann Arbor, MI, USA
³University of Washington, Seattle, WA, USA
⁴Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
⁵Tulane Research Innovation for Arrhythmia Discoveries (TRIAD), Heart and Vascular Institute, Tulane University School of Medicine, LA, USA
⁶Duke Clinical Research Institute, Durham, NC, USA
⁷Scripps Memorial Hospital - La Jolla, La Jolla, CA, USA
⁸University of Massachusetts Medical School, Worcester, MA, USA
⁹Cardiac Electrophysiology Unit, Department of Cardiology, Canberra Hospital and Health Services, Australian National University, Australia
¹⁰Northwestern University Feinberg School of Medicine, Chicago, IL, USA
¹¹Imperial College London, and NHS Trust, London, United Kingdom
¹²Butler Health System, Cardiac Electrophysiology, Pittsburgh, PA, USA
¹³Karolinska Institutet, Department of Medicine Huddinge, Karolinska University Hospital, Stockholm, Sweden
¹⁴Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH
¹⁵Department of Medicine, Stanford University, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, and Center for Digital Health, Stanford, CA, USA
¹⁶Lucile Packard Children’s Hospital, Pediatric Electrophysiology, Palo Alto, CA, USA

*Corresponding Author:
Nassir Marrouche
Cardiac Electrophysiology, Tulane University School of Medicine
1430 Tulane Avenue, Box 8548, New Orleans, LA 70112, USA
Email: nmarrouche@tulane.edu

Word counts: 5,923
Keywords: digital health, wearables, arrhythmia, remote monitoring

Disclosures
Please see Appendix A.
Abstract

This collaborative statement from the Digital Health Committee of the Heart Rhythm Society provides everyday clinical scenarios in which wearables may be utilized by patients for cardiovascular health and arrhythmia management. We describe herein the spectrum of wearables that are commercially available for patients, their benefits, shortcomings and areas for technological improvement. The usage of wearables for rhythm diagnosis and management has quickly escalated in clinical practice. This document is the first of a planned series, in which we will update information on wearables as they are revised and released to consumers.
Introduction

Consumer and patient relationships with clinicians have changed drastically due to the expanded use of wearable health devices. As patients/consumers gain access to a wide variety of over-the-counter wearable tools, they are empowered by possessing, controlling, and managing their own health data. This shift is redefining the role of consumers and patients in driving their medical management (1). Moreover, the technology industry continues to invest in the ability of consumers and patients to self-monitor their health data. Thus, it becomes necessary to account for the patient/consumer in any initiative aiming to expand and guide the use of available wearables in daily clinical practice. On the other hand, clinicians are facing a new and large pipeline of health data from multitudes of wearable devices.

This document will be annually updated with information on the rapid technology developments to guide the use of wearables among consumers, patients and clinicians. We present common clinical scenarios seen in everyday clinical practice in which the provider will be confronted by health data obtained through wearable devices for screening, diagnostic or monitoring purposes. The document will also serve to help consumers, patients, industry and clinicians update their knowledge of available and upcoming wearable technologies and help decide which device best fits the patient’s needs (Fig. 1)

This document should be used by providers as a guide to navigate this complex and rapidly evolving field. Due to a lack of large randomized controlled trials, we do not make any specific recommendations on the use of specific devices.
Figure 1. Wearables such as smartwatches, wristbands, rings, handhelds, chest patches and chest straps may provide real time data such as heart rate using plethysmography, heart rhythm using electrocardiogram, blood pressure, pulse oximetry and activity/sleep.
Clinical Scenario #1: A 76-year-old man with diabetes, hypertension and coronary artery disease but with no known AF. He has not had palpitations, but he is worried about his risk of AF.

Many studies have shown that screening for AF in a population with high prevalence will lead to detection of a substantial number of patients with AF. In a Swedish systematic screening study, individuals aged 75-76 years had 3% new AF detected using 2 weeks of intermittent ECG (2). In the mSTOPS study, an ECG patch was used for up to 4 weeks in an elderly population (mean age 72.4) and 3.9 % new AF was detected (3). Implanted ILRs with longer monitoring periods in an older high-risk population can detect AF at a rate of 34.4% per person-year (95% CI, 27.7–42.3) (4). In contrast, detection of AF was low in studies of younger individuals, both using single time point ECG screening or prolonged screening using PPG in owners of smartwatches (5). A meta-analysis of 10 studies found that smartphone camera applications to detect AF had reasonably high sensitivity (94.2%), specificity (95.8%), and negative predictive value (99.8%), but the positive predictive value was generally low and false-positive AF results exceeded true-positive results (6).

Overall, AF detection through screening depends on the underlying prevalence in the population and the method and duration of detection. In countries with low health care consumption, AF is more likely to remain undiagnosed and AF screening efforts may lead to a higher number of diagnosed AF patients. Traditionally, the diagnosis of AF required a 12-lead ECG (7). More recent digital developments have allowed for easier access to portable ECGs through ambulatory equipment, watches with 1-lead ECGs or ECG patches. It remains difficult to monitor the heart rhythm using an ECG for prolonged periods of time without an invasive device. However, PPG enabled devices, can enable heart rhythm monitoring for longer periods of time and allow for real time ECG capture when prompted by the device or patient. The Apple Heart study, enrolled 419,297 participants in the USA over 8 months to evaluate whether a PPG-enabled device could detect AF in individuals without a known history of the disease. Once an initial tachogram met irregularity criteria, the algorithm scanned for PPG irregularities during periods of minimal arm movement. If four subsequent irregular tachograms were confirmed, the participant was notified of an irregular pulse via a notification on the smartwatch and study app. The positive predictive value for AF detection was 84% and 71% for the irregular notification algorithm and individual tachograms (8). Advanced machine learning techniques may improve AF detection more as deep neural networks have shown excellent performance against gold standard 12-lead ECG (9). Indeed a recent multi-center trial of 203 patients with history of cryptogenic stroke or transient ischemic attack, a 30-day smartphone ECG recording was superior to the detection of AF when compared with the standard repeat 24-h Holter monitoring.
While wearables have potential to diagnose AF early and prevent AF progression and complications, many uncertainties remain including what patient groups to target for screening and the need to prove that early detection of AF prevents adverse outcomes. The ongoing HEARTLINE trial is the first randomized trial to investigate whether detecting symptomatic and asymptomatic AF with the use of smartwatch device (with combined PPG and ECG) would improve clinical AF diagnosis, reduce hard outcomes and increase compliance with anticoagulation therapy (NCT04276441 2020).

Future Directions

While screening for AF is gaining substantial and broad interest in the clinical community, numerous uncertainties remain. First, it is important to define the population that should be screened for AF. There is consensus for the need to screen patients with embolic stroke of undetermined source and those with symptoms that suggest AF (11). However, it is not clear who beyond these groups of patients should be screened for AF. Studies have also shown that the longer monitoring periods will lead to higher yield for AF screening (4). There is a need to define the ideal patient population and monitoring period to identify those who would benefit from screening for AF. Whether intervening by initiating anticoagulation would lead to better outcomes is yet to be determined (12). For screening to be beneficial and justified, evidence of improvement in patient care and outcomes as a result of earlier AF detection is needed (12). Future studies should focus on patient populations who may particularly benefit from screening (people > 75 years and patients with risk factors for AF) and determine the ideal monitoring period for detection of undiagnosed AF. Second, the most accurate, user-friendly, and cost-effective modalities should be defined. Third, more prognostic information on subclinical AF is needed. It is not clear if this entity portends the same risk of stroke and heart failure as clinical AF. Finally, more data is needed on the outcomes of potential interventions for subclinical AF including anticoagulation, rate and rhythm control strategies.

Incentive for Innovation

There are several incentives for innovation including the significance and large magnitude of the problem (13). In one study, of the 5.3 million Americans with AF, 698,900 (13.1%) were found to have undiagnosed AF, and this is likely the tip of the iceberg (13). Another incentive for innovation is the potential of early detection of AF to result in improved attention to lifestyle modification and better outcomes including reduced risk of stroke and HF and prevention of cardiac remodeling. The potential for cost savings is noteworthy as with early detection and management of AF, one may prevent adverse sequelae such as stroke and heart failure.

Clinical Scenario #2. A 40-year-old man with no past medical history presents to your clinic with palpitations

Palpitations may be due to changes in emotional or psychological states, prescribed or illicit drugs, excessive alcohol use, smoking, strenuous exercise, or excessive consumption of caffeinated drinks. Palpitations may also be due to cardiac arrhythmias
such as sinus tachycardia, premature atrial and ventricular ectopy, supraventricular
tachycardia (SVT), ventricular tachycardia (VT), atrial fibrillation (AF) or atrial flutter (14).

Wearable devices offer a unique opportunity to capture and diagnose such arrhythmias
during infrequent episodes of palpitations by using one or both types of sensors: the
electrocardiogram (ECG) which is a recording of the heart electrical activity, and
photoplethysmography (PPG) which uses light to detect changes of blood volume in the
microvascular bed of tissue. As the PPG is not measuring the electrical signals, and is a
measurement of cardiac mechanical changes, it can only be used as a proxy for the
actual rhythm. It may be used as a screening tool to identify patients at risk for having
AF or SVT, but these patients would ultimately require an ECG for diagnosis (15-17).
The frequency of the palpitations is important in determining the monitor needed for
diagnosis. Rare or short-lasting episodes in which the patient would not have sufficient
time to activate a wearable device would require a physician prescribed monitor.

By using the continuous heart rate recorded using the PPG along with the data from an
accelerometer, a wearable can detect the discrepancy between the user activity and
their heart rate. If the heart rate changes significantly while the user is resting, it may
prompt the user to record an ECG to determine if the change in heart rate is due to an
arrhythmia (16, 17) [https://support.apple.com/en-us/HT208931]. Smartwatches and
consumer device grade handheld single lead ECGs have been validated for detection of
AF versus sinus rhythm. However, they have been shown to have variable sensitivities
ranging from 54.5% to 100% (18, 19). Lowres et al. reported 98.5% sensitivity and
91.4% specificity for AF detection with a further study indicating sensitivity of 94.6%
(95% confidence interval [CI], 85.1–98.9) and 92.9% specificity (95% CI, 92.0–93.8)
(20).

A randomized trial compared symptomatic rhythm detection rate of smartphone based
handheld ECG devices alongside standard care versus standard care alone, for 242
patients presenting to the ED with palpitations and pre-syncope with no obvious cause
evident at initial consultation. A symptomatic rhythm was detected at 90 days in 69
(n = 124; 55.6%; 95% CI 46.9–64.4%) participants in the intervention group versus 11
(n = 116; 9.5%; 95% CI 4.2–14.8) in the control group (RR 5.9, 95% CI 3.3–10.5;
p < 0.0001). The most common symptomatic rhythms detected were sinus rhythm (in 53
participants; 66.3%), sinus tachycardia (19; 23.8%) and ectopic beats (13; 16.3%).
Some participants had more than one symptomatic rhythm recorded. Eighty participants
had a symptomatic rhythm detected with 12 of these having a symptomatic cardiac
arrhythmia (atrial fibrillation or flutter, SVT and sinus bradycardia) and 68 having sinus
rhythm, sinus tachycardia or ectopic rhythm. Rhythm classifications were confirmed by
clinicians (21).

Recent advances in machine learning have enabled handheld ECG devices to
automatically detect premature ventricular contractions and supraventricular ectopic
beats in addition to AF which contribute to a significant number of events in patients
with palpitations. Further research will improve detection of other rhythms such as
premature atrial and ventricular beats using PPG. However, these algorithms need to be validated in large and diverse patients populations before clinical adaptation (22)

Future Directions

Digital health technologies hold great promise for detection of arrhythmias that may cause palpitations. There is a need for large clinical studies that validate detection of a wide range of arrhythmias that may be responsible for palpitations. Although most consumer ECG devices today provide high quality signals and with the right algorithm may be able to detect a wide spectrum of arrhythmias, many of the devices have only been validated for AF detection. Further algorithm developments will increase their accuracy and reliability and improve the clinical use of wearable devices for investigating all arrhythmic causes of palpitations.

Incentive for Innovation

One of the incentives for innovation is to lower the false positive rate of detection of arrhythmias, while improving specificity, especially during increased heart rate due to patient activity. This would reduce patient anxiety prior to physician verification, increase utilization of wearables for diagnosis of arrhythmias and reduce dependency on physician prescribed ECG patches, 24 hours Holter and implanted loop recorders (ILR) for arrhythmia diagnosis.

Clinical Scenario #3: A 22-year old woman with no past medical history has noticed she frequently has an elevated heart rate

Elevated resting heart rate is a marker of increased autonomic state or decreased vagal tone in many diseases, including hyperthyroidism, dysautonomia, neoplastic disease, substance abuse, anorexia nervosa, or deconditioning (23, 24). Heart rate variability may be a marker cardiovascular fitness revealing a person’s flexibility between the sympathetic and parasympathetic state and its temporal indices have been correlated with predictions of mortality (25) and overall general health (24-26). Many wearables are able to provide long-term monitoring of heart rate and heart rate variability using PPG technology over an extended period of time (27).

PPG-based technology has the advantage of providing continuous and long-term non-invasive monitoring of heart rate through wearable or smartphone devices (17). PPG-based monitoring can detect sporadic episodes of supraventricular tachyarrhythmias (SVT) that are particularly frequent in the young population (<50 years old), who also constitutes the majority of consumers in the digital health market. It is critical for providers and consumers to be familiarized with the efficacy and reliability of different wearable devices for the assessment of heart rate to properly integrate the biometric data into clinical care and decision-making processes.

The reliability of PPG-based devices in assessing heart rate has been investigated in multiple studies, comparing it to either a 12-lead ECG, other forms of continuous ECG monitoring, or pulse oximeter measurements (17, 22). There have been encouraging results regarding the accuracy of PPG-based wearable devices for the assessment of
heart rate in both controlled (28-30) and free-living conditions (31-35), although several challenges remain to achieve optimal accuracy (36). In most studies, the percentage of errors in heart rate measurements for wearable devices did not exceed 10% compared to standard reference tools. Most devices had a slight tendency to underestimate heart rate measurements, within a range of 5 beats per minute. These observations have also been confirmed in a meta-analysis of 29 studies (32) assessing the accuracy of PPG-based heart rate measurements, suggesting careful interpretation of PPG-measured heart rate in medical settings where high reliability is required (29, 37).

On the other hand, testing the accuracy of PPG devices in different real-life settings has unveiled several sources of inaccuracy (36, 38). Darker skin tones absorb more green light than lighter ones, interfering with PPG-based mechanisms and decreasing the accuracy of PPG-based devices in measuring heart rate (32, 39, 40). Nevertheless, prospective studies and meta-analysis have contradicted this observation, showing no significant change in accuracy of multiple consumer grade PPG devices across a wide range of skin tones (36). Additionally, significant discrepancies in accuracy and consistency of heart rate measurements exist between different wearable devices (32). Moreover, physical activity can generate significant motion artifacts, resulting in false or missing beats (41). Thus, the accuracy of real-time heart rate monitoring decreases as exercise intensity increases (27, 28, 36, 42, 43). In an observational study evaluating four devices in different activity settings, the accuracy decreased by 30% during physical activity and all devices tended to overestimate heart rate measurements during exercise (36). Cardiovascular conditions associated with low blood pressure or vasoconstriction could decrease the accuracy of the PPG measurement. Other reported sources of inaccuracy include body mass index, contact pressure with the skin, larger wrists, and gender (38).

Additionally, the assessment of heart rate during tachyarrhythmia episodes seems to be more challenging. Sequeira et al. (44) measured heart rate during paroxysmal SVT episodes using 4 different devices (Apple Watch, Polar 7 Chest band, Garmin, Fitbit). During short runs of SVT (<60 seconds), all devices demonstrated a high error rate in detecting the sudden elevation in heart rate. Only two devices, Apple Watch and Polar 7 chest band, showed an acceptable accuracy in detecting episodes of SVT that were longer than 60 seconds. In another study (45), smartwatch and wristband wearables were tested on 102 hospitalized patients and demonstrated a strong accuracy in estimating heart rate during sinus rhythm and atrial flutter, but underestimated heart rate during atrial fibrillation episodes when compared to continuous ECG.

Future Directions

The cost of heart rate sensors has markedly dropped in the past decade, with the raw component pricing of light emitting diode and photodiode in bulk allowing creation of near-disposable devices. As the cost of complete monitoring devices drops to allow more ubiquitous use, numerous creative screening and diagnostic applications are likely, and physicians should be prepared to evaluate previously asymptomatic individuals with abnormal readings. The detected elevated heart rate may be a
“surrogate marker” for an underlying condition, and real time or early detection may enable prompt treatment of the root cause of the inappropriate tachycardia.

Incentive for Innovation

Notably, all previously mentioned data explored the accuracy of heart rate measurements in relatively healthy participants who were presumably in sinus rhythm. Data evaluating wearables usage for abnormalities in heart rate and heart rate variability with cardiovascular conditions is scarce (37). Moreover, there have been no large clinical trials to evaluate the clinical implications of high heart rates detected on a wearable device in real-life settings. Thus, more research is needed to determine how to interpret the data and how this data can be utilized for early prevention or to improve cardiovascular health in patients with cardiovascular disease.

Clinical Scenario #4: 65-year-old man with hypertension and now 3-months post pulmonary vein isolation for paroxysmal AF. Patient wants to stop oral anticoagulant (OAC) after shared decision making if no prolonged AF episodes post-ablation.

While many patients may be eager to discontinue anticoagulation in the setting of an effective rhythm control strategy, to date there are no completed randomized trials assessing the risks and benefits of anticoagulation cessation following AF ablation. Upcoming clinical trials, such as Higher Risk Patients Post-Catheter Ablation for Atrial Fibrillation (OCEAN) trial (NCT02168829) will help us better understand what to do with anticoagulation after AF ablation. The ideal option for monitoring using wearables post AF ablation is dependent, in part, on the sensitivity of the monitoring technique for the minimum duration of AF which may be associated with stroke. Duration of AF in hours, not minutes, appears to be associated with stroke (46-51). While ILR would provide sensitivity for AF episodes as brief as 2 minutes in duration, the cost and invasive nature limits their routine use for this indication. Daily ECG checks with wearable technologies have an estimated sensitivity of only 50% (52) and are likely to detect only very prolonged episodes of AF. A wearable device capable of passive AF surveillance with PPG and ECG confirmation of the suspected episodes would be a reasonable choice to provide ongoing surveillance for recurrence of AF. When comparing with ILR, sensitivity and specificity for AF detection from these wearables can exceed 95% (53). A previous study performed simultaneous comparison between ILR and a PPG smartwatch with ECG confirmation and demonstrated a sensitivity of 97.5% for AF episodes > 1 hour (54). This suggests that wearables may be a viable alternative to ILR or event monitors for screening of AF and may be utilized in monitoring for recurrence of AF after ablation.

Guidelines state that decisions regarding continuation of OAC more than 2 months post-ablation should be based on a patient’s stroke risk profile and not on the apparent success or failure of the ablation procedure (55). Shared decision making is required to discuss the benefits and risks of anticoagulation discontinuation in the post-ablation setting (56, 57). The recommendation against anticoagulation discontinuation is based, in part, on the modest long-term success rate of ablation, the high burden of
asymptomatic AF following intervention, and the uncertain role of atrial myopathy that may promote thromboembolic events in the absence of AF (58). However, given the high prevalence of asymptomatic AF following ablation, anticoagulation cessation based on symptom resolution alone fails to account for the high proportion of asymptomatic AF episodes and may expose the patient to a risk of cardioembolic events (59).

Retrospective cohort studies of anticoagulation cessation post-ablation have found conflicting results. In a study of 6886 post-ablation patients from a US administrative claims database, only 31.3% of patients remained on OAC 12 months post-procedure. The risk of cardioembolism beyond 3 months was increased with OAC discontinuation among high-risk patients, those with a CHA₂DS₂VASc score ≥2 (hazard ratio 2.48 [95% CI 1.11–5.52], P<0.05) but not low-risk patients, CHA₂DS₂VASc score 0-1 (60). Similar results were seen in a Swedish registry of 1175 post ablation patients followed for at least a year. Of these, 30.6% discontinued anticoagulation treatment during the first year. In patients with a CHA₂DS₂VASc score of 2 or more, those who discontinued anticoagulation treatment had a higher rate of ischemic stroke compared with those continuing anticoagulation [1.6% per year vs 0.3% per year] (P = .046). Patients with a CHA₂DS₂VASc score of 2 or more or those who had previously experienced an ischemic stroke displayed a higher risk of stroke if anticoagulation treatment was discontinued (hazard ratio, 4.6; 95% CI, 1.2-17.2; P = .02 and hazard ratio, 13.7; 95% CI, 2.0-91.9; P = .007, respectively). In contrast, in a study of 3355 post-ablation patients, no difference in stroke rate was observed in the 2692 whose anticoagulation was discontinued, including the 40% with CHADS2 score of ≥2 (50). Given the high recurrence rate of AF post-ablation and the tendency for recurrences to be asymptomatic in nature, long-term monitoring would be appropriate if anticoagulation discontinuation were to be considered.

Future Directions

Current wearable devices provide information on the presence or absence of AF. In the future, wearable technologies that provide information on AF duration and burden could prove useful in assessing stroke risk and effectiveness of treatment measured by AF burden reduction. In addition, customizable software balancing sensitivity and specificity in a population with known AF will likely improve device accuracy. Prospective trials assessing the feasibility of targeted, time-delimited NOAC using AF-sensing wearables could potentially limit OAC usage while still maintaining stroke prevention.

Incentive for Innovation

Discontinuation of OAC after AF ablation happens frequently in clinical practice and is often driven by patient demands despite a lack of consistent data supporting its safety. Conversely, chronic anticoagulation for patients with infrequent episodes of AF either spontaneously or as the result of an effective rhythm control strategy including antiarrhythmic drugs or ablation exposes the patient to the untoward effects of the drugs during prolonged periods of sinus rhythm when stroke risk appears to be low. Wearable devices today are most often used for AF screening. Improvement in device capabilities and rigorous clinical trial data establishing the utility of these devices in a population with known AF would expand their use and potentially improve patient outcomes. This
strategy would reduce healthcare costs given the economic burden of OAC and associated bleeds, thus making payment for wearable devices of interest to payors and patients. The utilization of wearable technologies to assess the presence and treatment impact on AF-related comorbidities (e.g., hypertension, OSA, poor sleep, and inactivity) may also prove useful in both primary and secondary AF prevention.

Clinical Scenario #5A & B:
A 64-year old man with symptomatic paroxysmal AF, creatinine clearance of 50 milliliters/minute, prior coronary stenting who has been satisfactorily treated with Dofetilide 250 micrograms every 12 hours for the past 3 months. He is not interested in catheter ablation. Pre-treatment QTc was 410 milliseconds (ms); 12 lead EKG last week showed a QTc of 480 ms. Open-ended QT monitoring was prescribed using “wearable” technology with a plan for weekly transmission of a resting single-lead rhythm strip via electronic medical record.

A 25-year old woman with genotype positive/phenotype negative LQTS (KCNH2; has a sister with clinical LQTS) suffers from schizophrenia, for which risperidone has been the only effective and tolerated drug. Open-ended QT monitoring was prescribed using “wearable” technology with a plan for weekly transmission of resting single lead rhythm strip by patient via electronic medical record.

The ECGs generated by “wearable” devices that generate one or more limb lead ECG recordings might permit assay of the static QT interval with reasonable accuracy (61). In a small group of patients with persistent AF treated with Dofetilide, there were no significant differences between ECG obtained through handheld ECG devices and QTc obtained from a 12 lead ECG (62). Advanced machine learning techniques such as deep learning can significantly improve the performance of QTc measurement in handheld ECG recorders and help their wide adoption for measurement of QTc interval. Deep learning enabled QTc interval measurements derived from handheld mobile ECG recorders have been shown to yield similar results to QTc measurements using 12 lead ECGs annotated by human experts (-0.45 ms +/- 24.73) vs. +10.52 ms +/- 25.64) (61).

The performance of smart watch ECG for measurement of QT depends on several factors including ECG tracing quality, T-wave amplitude and recording lead. There are several strategies that have been suggested to improve the accuracy of QT measurement using smart watch ECGs. Identifying the best smartwatch position using T-wave mapping at baseline can improve accuracy. Further, the lead recorded by smartwatches (lead I), may be suboptimal for measuring the QT interval and other leads can be reproduced by placing the smartwatch on the left ankle or chest (63). QT interval measurement from a smart watch equivalents of lead I with the watch on the left wrist, lead II with the watch on the left ankle, and a simulated lead V6 with the watch on the left lateral chest showed a median absolute error in QT of 18, 20 and 16 milliseconds respectively, compared to QT measurements from a 12 lead ECG (64). There is a need for larger studies to validate the findings in diverse patient cohorts with different clinical indications for QT monitoring.
Future Directions

It is reasonable to anticipate greater accuracy in QT interval measurement using devices which incorporate simultaneous multi-lead vector acquisition. It will be important to demonstrate accuracy of QT analysis using serial measurements of the QT interval on individuals and among different populations and clinical indications. The ability to perform serial recordings may permit dynamic QT assessment and assess QT “trajectory” which may improve safety. There is also a need for clinical trials to establish the safety of these devices for monitoring QT intervals in clinical scenarios where close monitoring of QT interval is paramount, for instance, during drug initiation or loading. Termination or reducing the dose of the drug based on the QT interval is achieved by an active intervention such as reduction of dosage or cessation of a drug or temporary pacing. It is therefore reasonable that, at least in “high risk” scenarios, an ambulatory QT monitoring strategy without defibrillation backup would not be utilized for initial administration of the drug. It will remain to be demonstrated whether and how the use of a wearable ambulatory QT monitoring strategy for previously loaded drugs fares with current care paradigms. Wearables can provide real time QT monitoring which potentially allows for continuation of drugs in the setting of metabolic decline (e.g. glomerular filtrate rate) beyond the time that they are discontinued in current practice which may otherwise have adverse clinical repercussions.

Incentive for Innovation

Clinical safety and efficacy of using a wearable QT monitoring strategy needs to be established through rigorous clinical trials in diverse populations with different clinical indications. Other considerations which may stymie the development wearable QT monitoring strategies may also include medicolegal risk and lack of financial models that incentivize the clinicians and patients to adopt these technologies.

Clinical scenarios #6A and 6B:

A 64-year old man who is a marathoner training for a race develops intermittent, sudden palpitations associated with shortness of breath.

A 25-year old woman who is a competitive track and field athlete wants to optimize her cardiac performance during training.

For the competitive athlete, digital health has the potential to impact training and performance, preparticipation evaluation, and assessment of symptoms potentially associated with cardiovascular disease. Recent advances in wearables allow athletes and their sports medicine trainers and clinicians to monitor movement, workload, performance, and endurance through specific biometrics such as heart rate, heart rate variability, activity levels, oxygen saturation, and sleep (65-67). Digital health technology permits personalized data collection via wearable sensors, wristbands, or chest patches and can provide real time physiological and action monitoring with position specific patterns in movement, performance optimization, caloric expenditure, altitude, mileage, steps, pace and screening for potential injury. Some commercially available global position systems can even monitor a full team. Unfortunately, evidence for their utilization is still limited (68, 69).
For the competitive athlete, digital health has the potential to impact training and performance, preparticipation evaluation, and assessment of symptoms potentially associated with cardiovascular disease. Arrhythmias that may be detected during exercise may include AF, VT, SVT, premature atrial or ventricular beats, and change in QT interval with exercise. Capture of these arrhythmias may be helpful in management of patients with cardiac disease such as hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy or long QT syndrome. Digital health technology permits personalized data collection via wearable sensors, wristbands, or chest patches and can provide real time physiological and position monitoring.

Global positioning system technologies in wearables can track external workload metrics such as resistance, duration, and speed. While measuring training volume and performance can guide training, the same measurements can also guide pre-competition tapering of training. Furthermore, measuring cadence, stride length, and contact time with surfaces provides biomechanical load data that can be used to prevent injuries. Accelerometers, inertia sensors, and insole pressure measurement systems imbedded in wearables can provide biomechanical data. Average, heart rate variability, activity levels, oxygen saturation, and sleep assessments can be combined with the above performance metrics to optimize running performance.

Conventional options to capture arrhythmias that are common include a patch based ECG monitor, rarely is ILR used. Wearables offer form factors that may be more conducive to capturing arrhythmia given the practicalities around training. Heart rate trends recorded from a watch and tabulated on an app may identify higher ranges higher than normal, and if correlating with symptoms, are suggestive of an arrhythmia. Graphical representation on smartphone apps may be akin to heart rate trends seen on telemetry units in the hospital. For those with clear symptoms in the absence of syncope or significant lightheadedness dizziness, ECG capable wearables provide important adjunctive rhythm information.

Future Directions
More evidence and standardization of data are needed for guidance of how sensors and monitors can be used for risk optimization of training and performance, while minimizing risk of injury. Limited evidence is available on how heart rate, heart rate variability can be clinically used for various sports which have different cardiopulmonary demands and differences which may be seen in athletes of varied ages, gender and race who may have underlying cardiovascular conditions.

Incentive for Innovation
More research is necessary to personalize heart rate expectations and recommendations and heart rate variability in various sports and at certain levels of activity based on age, gender, race, cardiovascular fitness and exercise capacity. Form factors need to be compatible with sport and not impose risk for injury to the wearer and others on the court or field. For example, for contact sports, arm bands and vest
with pouch form factors would be less likely to risk injury and damage than rings and watches or wristbands. Furthermore, more information is needed for clinicians to understand, analyze and how to utilize this data for risk stratification for arrhythmias such as sudden cardiac death.

Clinical Scenario #7. A patient with OSA, a known risk factor for atrial fibrillation, is counselled about risk reduction and is actively working on weight loss and CPAP therapy. Various options for screening for and diagnosis, as well as monitoring response to therapy in this setting are summarized below.

OSA is associated with an increased risk of pulmonary and systemic hypertension, heart failure, stroke, bradycardia and AF (71). OSA is suspected when patients report tiredness, daytime sleepiness, and unrestful sleep and when they are told they snore or stop breathing while asleep. Polysomnography or sleep study is the gold standard diagnostic test and includes recording of brain waves with electro-encephalograms, oxygen saturation and breathing, leg movement and ECG. Sleep studies are typically performed at dedicated sleep centers but can also be performed at home. Continuous positive airway pressure (CPAP) is the usual therapy of choice to reduce hypoxia and alleviate symptoms. The severity of OSA can vary within the individual patient from one sleep period to another, which is a limitation of overnight sleep studies. Studies from patients with pacemakers show a wide range of variability in abnormal sleep indices with a clear association between the severity of OSA and the burden of AF (72).

Instead of undergoing a formal sleep study, apps and wearables now offer feedback on sleep and oxygenation to patients from their phone, ring, wristband or watch. Some smart watches offer a blood oxygen app which using the photodiodes on the back to measure oxygen levels [https://support.apple.com/en-us/HT211027]. There are several available apps for the smartphone and wearable devices that guide sleep hygiene such as when one would like to sleep and wake-up and also apps which leave the phone’s microphone on while one sleeps to notate when one may have an apneic event and when gasping for air with a sensitivity of 88.3% and specificity of 80.0% (73). Past studies have examined the relationship bedtime regularity and resting heart rate monitoring by digital wristband and shown that going to bed 30 minutes later than one’s normal bedtime was associated with a significantly higher resting heart rate throughout sleep, persisting into the following day, demonstrating that proper sleep habits may affect cardiovascular health (74, 75). Wearables can measure how much time you spend in various sleep phases and even give sleep quality scores based on duration of sleep, movement disturbances and heart rate (76). In a recent study on patients with OSA, a smartwatch provided acceptable heart rate measurement on telemetry (77). More definitively, in a study evaluating the incidence of AF in patients with severe OSA, implantable loop monitors diagnosed AF in 20% of study participants (78), after an average monitoring period of 11 months.

Future Directions

Wearable technologies, using sensors on the wrist, chest straps, rings, and smartphones have been used to track rest and sleep as part of a package to monitor
activity and fitness, and have an important role to play not only in diagnosing OSA and tracking sleep patterns but also in diagnosing AF and other arrhythmias that are prevalent in this population. These technologies can also be used in surveillance and evaluation of response to therapy in these patients, such as CPAP. It is unclear if other recorded bio-signals such as skin temperature, skin conductance may further advance staging of sleep (79). However recent evaluations of these sleep technologies suggest there is significant room for improvement because of the high degree of variability in the accuracy of these technologies and they displayed lower error and bias values when quantifying sleep/wake states as compared to sleep staging duration which seems to be lacking in accuracy (79, 80). Collaboration with and inclusion of recommendations from sleep experts may be helpful in developing further applications and understanding how to analyze data recorded.

Incentive for Innovation

There is a wide range of variability in reported sensitivity and specificity in OSA diagnosis, using currently available technology, compared to the standard polysomnography (81). This provides a continuous incentive for improvement of the diagnostic accuracy of existing or development of alternative approaches in wearable tools. In addition, with higher AF risk in the OSA population, adjunctive or concomitant arrhythmia monitoring in a longitudinal fashion, extended over a longer duration is key in diagnosing and identifying parametric profiles that characterize patients at risk for this arrhythmia (82).

Concluding Remarks

Wearables are now available in many forms to consumers such as watches, wristbands, rings, chest straps and patches and able to provide the wearer with vital health information in real time and at times also with a cursory diagnosis. This document may serve as a guide for clinicians to traverse the growing and upcoming digital technologies that are available to patients for procurement. Naturally, as more patients adopt the usage of these technologies into their lives for fitness and health monitoring of their heart rate, heart rhythm, blood pressure, oxygenation, activity, and sleep, it is critical for us as clinicians to understand how data from wearables can be incorporated into a patient’s electronic medical record, reduce hospitalization, or improve preventative care.
<table>
<thead>
<tr>
<th>Device</th>
<th>Measurements</th>
<th>ECG recording duration</th>
<th>Regulatory decisions FDA approval</th>
<th>Battery life</th>
<th>Autodetect or patient triggered</th>
<th>Wear location</th>
<th>Connectivity</th>
<th>Compatible OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple watch (Series 6)</td>
<td>HR ECG Activity Temperature Pulse Oximetry</td>
<td>30 seconds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bluetooth, WiFi, Cellular</td>
<td>iOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiaomi (Amazfit Smart Watch 2)</td>
<td>HR ECG Activity</td>
<td>60 seconds</td>
<td>Not approved</td>
<td>Charging</td>
<td>Patient triggered</td>
<td>Wrist</td>
<td>Wi-Fi, Bluetooth</td>
<td>iOS, Android</td>
</tr>
<tr>
<td>Device</td>
<td>HR</td>
<td>ECG</td>
<td>Activity</td>
<td>Pulse</td>
<td>Oximetry</td>
<td>Charging</td>
<td>Unavailable</td>
<td>Wrist</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Huawei (GT2 Pro)</td>
<td>HR</td>
<td>ECG</td>
<td>Activity</td>
<td>Pulse</td>
<td>Oximetry</td>
<td>National Medical Products Administration 's Class II medical device registration certificate (Chinese)</td>
<td>Charging</td>
<td>Unavailable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitbit (Sense)</td>
<td>HR</td>
<td>ECG</td>
<td>Activity</td>
<td>Pulse</td>
<td>Oximetry</td>
<td>Temperature</td>
<td>Yes</td>
<td>Cleared</td>
</tr>
<tr>
<td>Whoop</td>
<td>HR</td>
<td></td>
<td>Respiratory rate</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Cleared</td>
</tr>
<tr>
<td>Oura ring</td>
<td>Activity</td>
<td>HR</td>
<td>HRV</td>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Device</td>
<td>Feature</td>
<td>Time</td>
<td>Status</td>
<td>Connectivity</td>
<td>Method</td>
<td>OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kardia band</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>Connected to apple watch</td>
<td>Finger</td>
<td>Clearing</td>
<td>iOS, Android</td>
<td></td>
</tr>
<tr>
<td>Withings MOVE ECG</td>
<td>ECG Activity</td>
<td>30 seconds</td>
<td>The ECG monitor of Move ECG has received a CE marking, following the medical device directive. Withings is working closely with the FDA to receive medical clearance.</td>
<td>Charging</td>
<td>Patient triggered</td>
<td>Wrist</td>
<td>Bluetooth</td>
<td>iOS, Android</td>
</tr>
<tr>
<td>Verily Study Watch</td>
<td>ECG HR Electrodermal Activity Inertial Movements</td>
<td>Unavailable</td>
<td>Cleared</td>
<td>Charging</td>
<td>Unavailable</td>
<td>Wrist</td>
<td>Unavailable</td>
<td>Unavailable</td>
</tr>
<tr>
<td>Samsung (Galaxy 3)</td>
<td>HR Pulse Oximetry Activity</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>Charging</td>
<td>Patient triggered</td>
<td>Wrist</td>
<td>Wi-Fi, Bluetooth</td>
<td>iOS, Android</td>
</tr>
</tbody>
</table>
For Public Comment Purposes Only. Not for Distribution, Citation, or Dissemination

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Measurement Duration</th>
<th>Certification Details</th>
<th>Connectivity Options</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin</td>
<td>ECG</td>
<td>No</td>
<td>N/A</td>
<td>Wrist</td>
<td>Wi-Fi, Bluetooth</td>
</tr>
<tr>
<td></td>
<td>Pulse Oximetry, Hydration, HR</td>
<td>No</td>
<td>N/A</td>
<td>Wrist</td>
<td>iOS, Android</td>
</tr>
<tr>
<td>Zenicor</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Zenicor’s system solution is CE-marked Class IIa and Zenicor Medical Systems AB is certified according to ISO13485.</td>
<td>Battery, Patient triggered</td>
<td>Hand-held, Web-based service, Zenicor ECG Doctor System</td>
</tr>
<tr>
<td>MyDiagnostick</td>
<td>ECG</td>
<td>60 seconds</td>
<td>Not Cleared by USB</td>
<td>Patient triggered</td>
<td>Hand-held, USB connection by the physician</td>
</tr>
<tr>
<td>Omron HCG-801</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Not Cleared by Battery</td>
<td>Patient triggered</td>
<td>Hand-held, PC download</td>
</tr>
<tr>
<td>Brand</td>
<td>ECG</td>
<td>Test Time</td>
<td>Result</td>
<td>Battery Type</td>
<td>Trigger Type</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Beurer ME 90</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>Battery</td>
<td>Patient</td>
</tr>
<tr>
<td>Cardiac Designs</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>Rechargeable</td>
<td>Patient</td>
</tr>
<tr>
<td>ECG check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CardioComm</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>AA battery</td>
<td>Patient</td>
</tr>
<tr>
<td>Solutions HeartCheck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CardiBeat and ECG Pen</td>
<td></td>
<td></td>
<td></td>
<td>Does not explicit say</td>
<td>Patient triggered</td>
</tr>
<tr>
<td>COALA</td>
<td>ECG</td>
<td>Yes, 2 lead</td>
<td>Cleared</td>
<td>Does not explicit say</td>
<td>Patient triggered</td>
</tr>
<tr>
<td>Product</td>
<td>ECG Type</td>
<td>Analysis</td>
<td>Charging</td>
<td>Event Trigger</td>
<td>Hand-held</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Eko DUO</td>
<td>ECG</td>
<td>Yes, single lead 15, 30, 60, 120 seconds</td>
<td>Cleared</td>
<td>Charging</td>
<td>Patient triggered</td>
</tr>
<tr>
<td>Smartphone ECG device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AliveCor Kardia mobile</td>
<td>ECG</td>
<td>30 seconds</td>
<td>Cleared</td>
<td>Connected to apple watch</td>
<td>Patient triggered</td>
</tr>
<tr>
<td>Physician Prescribed Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotel</td>
<td>ECG</td>
<td>Yes, up to 14 days of continuous extended monitoring</td>
<td>Cleared</td>
<td>Charging</td>
<td>Autodetect</td>
</tr>
<tr>
<td>Product</td>
<td>Type</td>
<td>Included</td>
<td>Cleared</td>
<td>Charged</td>
<td>Autodetect</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ZioPatch</td>
<td>ECG</td>
<td>Yes, up to 14 days</td>
<td>Cleared</td>
<td>Charged in the mail and will be sent back by the patient</td>
<td>Autodetect but will be self-applied by patients</td>
</tr>
<tr>
<td>Zio XT/AT</td>
<td>ECG</td>
<td>Yes, up to 14 days</td>
<td>Cleared</td>
<td>No need to charge by patients</td>
<td>Autodetect but will be self-applied by patients</td>
</tr>
<tr>
<td>Preventic E</td>
<td>ECG</td>
<td>Yes, not listed</td>
<td>Cleared</td>
<td>Will be applied by physician or self-applied</td>
<td>Autodetect</td>
</tr>
<tr>
<td>Medilynx</td>
<td>ECG</td>
<td>Yes, three lead up to 30 days</td>
<td>Cleared</td>
<td>Self-applied</td>
<td>Autodetect</td>
</tr>
</tbody>
</table>
References

50. S. Themistoclakis et al., The risk of thromboembolism and need for oral anticoagulation after successful atrial fibrillation ablation. *J Am Coll Cardiol* 55, 735-743 (2010).
56. D. H. Birnie, E. E. Smith, A. Verma, To continue or stop oral anti-coagulation in higher-risk patients after a “successful” AF ablation; that is the question. *J Cardiovasc Electrophysiol* 30, 1258-1260 (2019).

77. P. Huynh et al., Heart Rate Measurements in Patients with Obstructive Sleep Apnea and Atrial Fibrillation: Prospective Pilot Study Assessing Apple Watch’s Agreement With Telemetry Data. *JMRI Cardio* **5**, e18050 (2021).

Appendix A - Author’s Disclosure Table

<table>
<thead>
<tr>
<th>Writing group member</th>
<th>Employment</th>
<th>Honoraria/ Speaking/ Consulting</th>
<th>Speakers’ bureau</th>
<th>Research*</th>
<th>Fellowship support*</th>
<th>Ownership/ Partnership/ Principal/Majority stockholder</th>
<th>Stock or stock options</th>
<th>Intellectual property/ Royalties</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine Y. Wan, MD</td>
<td>Vagelos College of Physicians and Surgeons, New York- Presbyterian/Columbia University Irving Medical Center, New York, NY, USA</td>
<td>1. Boston Scientific; Medtronic</td>
<td>None</td>
<td>5. National Institutes for Health</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hamid Ghanbari, MD</td>
<td>University of Michigan, Ann Arbor, MI, USA</td>
<td>Preventice</td>
<td>None</td>
<td>0 Medtronic; Boston Scientific; Biotronik; Toyota</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nazem Akoum, MD, MS</td>
<td>University of Washington, Seattle, WA, USA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Zachi Itzhak Attia, MSEE, PhD</td>
<td>Mayo Clinic, Rochester, MN, USA.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Samuel J. Asirvatham, MD</td>
<td>Mayo Clinic, Rochester, MN, USA.</td>
<td>1. St. Jude Medical; Medtronic; Biotronik; Boston Scientific; Biosig Technologies; Medilynx</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eugene H. Chung, MD</td>
<td>University of Michigan, Ann Arbor, MI, USA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lilas Dagher</td>
<td>Tulane Research Innovation for Arrhythmia Discoveries (TRIAD), Heart and Vascular Institute, Tulane</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Location</td>
<td>Relationships</td>
<td>Grants Acknowledged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sana M. Al-Khatib, MD, MHS</td>
<td>Duke Clinical Research Institute, Durham, NC, USA</td>
<td>1 Milestone Pharmaceuticals; Medtronic</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Have received research funding from:</td>
<td>? Medtronic; Abbott; Boston Scientific</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Grektex, LLC</td>
<td>2 American Heart Association</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Stuart Mendenhall, MD</td>
<td>Scripps Memorial Hospital - La Jolla, La Jolla, CA, USA</td>
<td>1 Boston Scientific ; Medtronic</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassir F. Marrouche, MD</td>
<td>Tulane Research Innovation for Arrhythmia Discoveries (TRIAD), Heart and Vascular Institute, Tulane University School of Medicine, LA, USA</td>
<td>0 Medtronic; Biotronik; Biosense Webster, Inc.; Cardiac Design 1 Preventice</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Abbott; Boston Scientific; GE Healthcare; Janssen Pharmaceuticals; Siemens Healthcare</td>
<td>3 Biosense Webster, Inc.</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Heart Rhythm Society</td>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David D. McManus, MD, MSCi</td>
<td>University of Massachusetts Medical School, Worcester, MA, USA</td>
<td>1 Fitbit</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Boehringer Ingelheim; Bristol-Myers Squibb; Philips; Samsung; Apple Inc.; Biotronik;</td>
<td>5 Boehringer Ingelheim; Fitbit;Pfizer, Inc.; Otsuka Pharmaceuticals; Sanofi;</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boehringer Ingelheim; Fitbit;Pfizer, Inc.; Otsuka Pharmaceuticals; Sanofi; Care Evolution; Flexcon</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Heart Rhythm Society</td>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajeev K. Pathak, MBBS, PhD</td>
<td>Cardiac Electrophysiology Unit, Department of Cardiology, Canberra Hospital and Health Services, Australian National University</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Position</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rod S. Passman, MD</td>
<td>Northwestern University Feinberg School of Medicine, Chicago, IL, USA</td>
<td>Janssen Pharmaceuticals; Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2 Up to Date</td>
<td>None</td>
</tr>
<tr>
<td>Nicolas S. Peters</td>
<td>Imperial College London, and NHS Trust, London, United Kingdom.</td>
<td>Cardialen, Inc.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1 Boston Scientific; St. Jude Medical</td>
</tr>
<tr>
<td>David S. Schwartzman, MD</td>
<td>Butler Health System, Cardiac Electrophysiology, Pittsburgh, PA, USA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Emma Svennberg, MD</td>
<td>Karolinska Institutet, Department of Clinical Sciences, Cardiology Unit, Danderyd's University Hospital, Stockholm, Sweden</td>
<td>Bayer Healthcare Pharmaceuticals; Bristol-Myers Squibb; Pfizer, Inc.; Boehringer Ingelheim; Sanofi; Merck</td>
<td>None</td>
<td>5 Roche Diagnostics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Khaldoun G. Tarakji, MD</td>
<td>Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA</td>
<td>Medtronic; Janssen Pharmaceuticals</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Mintu P. Turakhia, MD, MS</td>
<td>Department of Medicine, Stanford University, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, and Center for Digital Health, Stanford, California.</td>
<td>Biotronik; Medtronic; Abbott; Myokardia; Milestone Pharmaceuticals; Pfizer, Inc.; Janssen Pharmaceuticals</td>
<td>None</td>
<td>5 Apple Inc.; Bristol-Myers Squibb; American Heart Association; Bayer Healthcare Pharmaceuticals</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthony Trela, NP, RN</td>
<td>Lucile Packard Children's Hospital, Pediatric Electrophysiology, Palo Alto, CA, United States</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirad Yarmohammadi, MD</td>
<td>Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Public Comment Purposes Only. Not for Distribution, Citation, or Dissemination
Irving Medical Center, New York, NY, USA

Number value: 0 = $0; 1 = ≤ $10,000; 2 = > $10,000 to ≤ $25,000; 3 = > $25,000 to ≤ $50,000; 4 = > $50,000 to ≤ $100,000; 5 = > $100,000.

*Research and fellowship support are classed as programmatic support. Sources of programmatic support are disclosed but are not regarded as a relevant relationship with industry for writing group members or reviewers.

Appendix B - Reviewer disclosure table (TBA)

<table>
<thead>
<tr>
<th>Peer reviewer</th>
<th>Employment</th>
<th>Honoraria/ Speaking/ Consulting</th>
<th>Speakers’ bureau</th>
<th>Research*</th>
<th>Fellowship support*</th>
<th>Ownership/ Partnership/ Principal/Majority stockholder</th>
<th>Stock or stock options</th>
<th>Intellectual property/ Royalties</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Number value: 0 = $0; 1 = ≤ $10,000; 2 = > $10,000 to ≤ $25,000; 3 = > $25,000 to ≤ $50,000; 4 = > $50,000 to ≤ $100,000; 5 = > $100,000.
*Research and fellowship support are classed as programmatic support. Sources of programmatic support are disclosed but are not regarded as a relevant relationship with industry for writing group members or reviewers.