Discussion Topic: Near-Term Prediction of Sustained Ventricular Arrythmias Applying Artificial Intelligence to Single-Lead Ambulatory Electrocardiogram
Please join Digital Education Committee Vice-Chair, Tina Baykaner, MD, MPH, of Stanford University, as she is joined by Heart Rhythm Society President Mina K. Chung, MD, FHRS, of the Cleveland Clinic, and Konstantinos C. Siontis, MD, FHRS of the May Clinic. The three met up in Altanta at HRX 2025 for this stimulating coversation.
This study evaluated whether artificial intelligence applied to single-lead ambulatory ECGs could predict imminent sustained ventricular arrhythmias. Using deep learning models, the researchers demonstrated that AI could identify subtle ECG features preceding arrhythmic events, enabling accurate short-term risk prediction. The findings suggest a potential role for AI-enhanced ECG monitoring to improve early detection and prevention of life-threatening ventricular arrhythmias.
Host: Tina Baykaner, MD, MPH
Guests: Mina K. Chung, MD, FHRS and Konstantinos C. Siontis, MD, FHRS
Speaker and Article Information: Download
Topic
- The Lead
Resource Type
- Podcasts
Related Resources

Podcasts
The Lead Episode 118: A Discussion of Atrial Fibrillation Catheter Ablation, Brain Glymphatic function, and Cognitive performance.
August 28, 2025

Podcasts
The Lead Episode 117: A Discussion of Can ICD Electrograms Help Ventricular Tachycardia Ablation?
August 21, 2025

Podcasts
The Lead Episode 116: A Discussion of Multicenter Results of a Novel Pediatric Pacemaker...
August 14, 2025